

NEET-UG Biology MCQ Practice Series

Chapter 14: Breathing & Exchange of gases

(50 Most Important MCQs with Answer Key & Explanations)

Prepared by: Study with Shelja (SWS)

For: NEET-UG 2026 Aspirants

Chapter 14 - Breathing & Exchange of gases (NEET MCQs - 50 Questions)

Respiratory Organs

- **1.** Respiration through moist skin is seen in:
- (a) Fish
- (b) Frog
- (c) Cockroach
- (d) Birds
- 2. Insects respire through:
- (a) Gills
- (b) Lungs
- (c) Tracheal system
- (d) Skin
- **3.** Among vertebrates, lungs are absent in:
- (a) Amphibians
- (b) Fishes
- (c) Reptiles
- (d) Mammals
- **4.** Cutaneous respiration in vertebrates occurs in:
- (a) Frog
- (b) Human
- (c) Bird
- (d) Lizard
- **5.** Alveoli are found in:
- (a) Earthworm
- (b) Mammals
- (c) Insects
- (d) Fish

Mechanism of Breathing

- **6.** Inspiration occurs when:
- (a) Intra-pulmonary pressure > Atmospheric pressure
- (b) Intra-pulmonary pressure < Atmospheric pressure
- (c) Thoracic volume decreases
- (d) Diaphragm relaxes
- **7.** Expiration occurs when:
- (a) Thoracic cavity expands
- (b) Pulmonary pressure < Atmospheric pressure
- (c) Pulmonary pressure > Atmospheric pressure
- (d) Diaphragm contracts

8. Which muscles help in forced expiration?

(a) External intercostals

(b) Internal intercostals and abdominal muscles

(c) Diaphragm only

(d) Sternocleidomastoid

9. Spirometer is used to measure:

(a) Blood circulation

(b) Breathing rate

(c) Respiratory volumes and capacities

(d) Heart rate

10. Normal breathing rate in a healthy human is:

(a) 6–8/min

(b) 12–16/min

(c) 20–24/min

(d) 30/min

***** Respiratory Volumes and Capacities

12. Volume of air forcibly inspired after normal inspiration is:

11. Tidal volume in an average adult is about:

(a) 150 mL(b) 500 mL(c) 1000 mL(d) 3000 mL

(a) ERV(b) IRV(c) RV(d) TV

(a) TV + IRV

(c) IRV + ERV (d) ERV + RV

(a) ERV + RV(b) IRV + ERV(c) TV + IRV(d) TV + ERV

(a) VC + RV

(b) IRV + ERV + TV

(b) TV + IRV + ERV

13. Vital capacity is equal to:

15. Total lung capacity (TLC) =

14. Functional residual capacity (FRC) =

(c) VC – RV (d) TV + ERV					
❖ Exchange of Gases					
16. Gas exchange in humans occurs at: (a) Bronchi (b) Alveoli (c) Trachea (d) Bronchioles					
17. Thickness of alveolar diffusion membrane is about: (a) 1 mm (b) 0.5 mm (c) <1 μ m (d) <1 mm					
18. Which factor does NOT affect gas diffusion across alveoli?(a) Partial pressure gradient(b) Solubility of gases(c) Membrane thickness(d) Active transport					
19. pO ₂ in alveoli is approximately: (a) 40 mm Hg (b) 104 mm Hg (c) 95 mm Hg (d) 159 mm Hg					
20. Solubility of CO_2 in blood is about how many times greater than O_2 ? (a) 2 (b) 5 (c) 20–25 (d) 50					
Transport of Gases					
21. Percentage of oxygen carried by hemoglobin in blood is: (a) 97% (b) 70% (c) 50% (d) 3%					
22. Oxygen dissociation curve is: (a) Linear					

(b) Sigmoid

(c) Hyperbolic (d) Exponential
23. Conditions in tissues favoring O_2 release from hemoglobin include: (a) High pO_2 and low pCO_2 (b) Low pO_2 , high pCO_2 , high H^+ (c) Low pCO_2 , low H^+ (d) Low temperature
 24. Each hemoglobin molecule binds maximally with: (a) 2 O₂ molecules (b) 3 O₂ molecules (c) 4 O₂ molecules (d) 6 O₂ molecules
25. Every 100 mL of oxygenated blood delivers about: (a) 1 mL O_2 (b) 3 mL O_2 (c) 5 mL O_2 (d) 10 mL O_2
26. Maximum CO ₂ transport occurs as: (a) Carbaminohemoglobin (b) Bicarbonate ions (c) Dissolved CO ₂ (d) Free CO ₂
27. Carbonic anhydrase is found mainly in: (a) Plasma (b) RBCs (c) Alveoli (d) Bronchioles
 28. Carbaminohemoglobin formation is favored in: (a) High pCO₂, low pO₂ (tissues) (b) Low pCO₂, high pO₂ (alveoli) (c) High pO₂, high pCO₂ (d) Low pCO₂, low pO₂
29. Every 100 mL of deoxygenated blood delivers about: (a) 2 mL CO_2 (b) 4 mL CO_2 (c) 6 mL CO_2 (d) 10 mL CO_2
30. The enzyme carbonic anhydrase catalyzes: (a) $CO_2 \rightarrow O_2$ (b) $CO_2 + H_2O \leftrightarrow H_2CO_3$

- (c) $H_2O \rightarrow H^+ + OH^-$
- (d) $O_2 \rightarrow CO_2$

***** Regulation of Respiration

- **31.** Respiratory rhythm center is located in:
- (a) Pons
- (b) Medulla oblongata
- (c) Cerebrum
- (d) Hypothalamus
- **32.** Pneumotaxic center is present in:
- (a) Pons
- (b) Medulla
- (c) Cerebellum
- (d) Midbrain
- **33.** Which is most important in regulating respiration?
- (a) $p0_2$
- (b) pCO2 and H+
- (c) Blood pressure
- (d) ATP levels
- **34.** Receptors detecting changes in pCO_2 are present in:
- (a) Aortic arch and carotid artery
- (b) Kidney
- (c) Liver
- (d) Stomach
- **35.** Oxygen plays:
- (a) Major role in regulation
- (b) Minor role in regulation
- (c) Equal role with CO₂
- (d) No role at all

Disorders of Respiratory System

- **36.** Asthma is caused by:
- (a) Inflammation of bronchioles
- (b) Rupture of alveoli
- (c) Fibrosis of lungs
- (d) Lack of surfactant
- **37.** Emphysema is due to:
- (a) Inflammation of bronchi
- (b) Damage of alveolar walls

- (c) Lung fibrosis due to dust
 (d) Infection by bacteria

 38. Long exposure to stone dust causes:
 (a) Asthma
 (b) Silicosis
 (c) Emphysema
 (d) Tuberculosis

 39. Occupational respiratory disorders mainly cause:
 (a) Increase in lung capacity
 - (b) Inflammation and fibrosis
 - (c) Extra alveoli formation
 - (d) High O₂ absorption
 - **40.** Which of the following is NOT a respiratory disorder?
 - (a) Asthma
 - (b) Emphysema
 - (c) Silicosis
 - (d) Arthritis

Mixed / Applied NEET-type Questions

- **41.** Minute volume in a healthy adult is approximately:
- (a) 1 L/min
- (b) 3 L/min
- (c) 6-8 L/min
- (d) 12 L/min
- **42.** The sound box in humans is:
- (a) Pharynx
- (b) Larynx
- (c) Trachea
- (d) Epiglottis
- **43.** Pleural fluid is important for:
- (a) Gas exchange
- (b) Reducing friction
- (c) Secreting mucus
- (d) O₂ binding
- **44.** Hypoxia refers to:
- (a) Excess O₂ at tissues
- (b) O₂ deficiency at tissues
- (c) CO₂ deficiency
- (d) Increased pO₂

- **45.** At high altitude, the most common problem is:
- (a) Silicosis
- (b) Hypoxia
- (c) Asthma
- (d) Emphysema
- **46.** Which part is the common passage for both food and air?
- (a) Larynx
- (b) Pharynx
- (c) Trachea
- (d) Bronchus
- **47.** Which respiratory volume ensures lungs never collapse?
- (a) TV
- (b) RV
- (c) ERV
- (d) IRV
- **48.** Which condition shifts O₂ dissociation curve to right?
- (a) High pH
- (b) High temperature & high pCO₂
- (c) Low H⁺ concentration
- (d) Low CO₂
- **49.** Surfactant in alveoli mainly:
- (a) Increases surface tension
- (b) Reduces surface tension
- (c) Helps diffusion
- (d) Acts as enzyme
- **50.** Which is NOT a step of respiration?
- (a) Inspiration
- (b) Gas exchange
- (c) Cellular respiration
- (d) Photosynthesis

ANSWER KEY

1-b	11-b	21-a	31-b	41-с
2-с	12-b	22-b	32-a	42-b
3-b	13-b	23-b	33-b	43-b
4-a	14-a	24-с	34-a	44-b
5-b	15-a	25-с	35-b	45-b
6-b	16-b	26-b	36-a	46-b

7-c	17-d	27-b	37-b	47-b
8-b	18-d	28-a	38-b	48-b
9-с	19-b	29-b	39-b	49-b
10-b	20-с	30-ь	40-d	50-d

EXPLANATIONS

Respiratory Organs

- **Q3.** Among vertebrates, only **fishes lack lungs**, they respire through gills. Amphibians, reptiles, birds, and mammals have lungs.
- **Q4.** Frogs can respire through moist skin (cutaneous respiration) besides lungs.

Mechanism of Breathing

- **Q6–7.** Inspiration occurs when **intra-pulmonary pressure < atmospheric pressure** due to diaphragm contraction & rib lifting. Expiration occurs when the reverse happens.
- **Q8. Forced expiration** uses internal intercostals + abdominal muscles, not diaphragm alone.

Respiratory Volumes & Capacities

- **Q13.** Vital capacity = IRV + TV + ERV. Important for clinical assessment of lung health.
- Q14. FRC = ERV + RV \rightarrow ensures some air always remains in lungs after normal expiration.

Exchange of Gases

- **Q17.** Diffusion membrane (alveolar epithelium + capillary endothelium + basement membranes) is **<1 mm thick**, facilitating diffusion.
- **Q18.** Gas exchange depends only on passive diffusion; **active transport does not occur**.
- Q20. CO_2 is $\sim 20-25 \times$ more soluble than $O_2 \rightarrow$ hence small pressure gradients can drive CO_2 exchange efficiently.

Transport of Gases

- **Q22.** Oxygen dissociation curve is **sigmoid (S-shaped)** due to cooperative binding of O₂ with hemoglobin.
- **Q23.** In tissues: low pO₂, high pCO₂, high H⁺ concentration & temperature \rightarrow favor O₂ release (Bohr's effect).
- **Q26.** Majority (\sim 70%) of CO₂ is carried as **bicarbonate ions**, not carbaminohemoglobin.
- **Q28.** At tissue level (high CO_2 , low O_2), carbaminohemoglobin formation is favored.
- **Q29.** Every 100 mL deoxygenated blood delivers ~4 mL CO₂ at alveoli.

Regulation of Respiration

- Q33. Regulation depends mainly on pCO₂ & H⁺, oxygen plays a minor role.
- **Q34.** Chemoreceptors in **aortic arch & carotid body** detect changes in CO₂/H⁺ and send signals to medulla.

Disorders of Respiratory System

- Q37. Emphysema = alveolar wall damage \rightarrow reduced surface area (common in smokers).
- **Q38.** Silicosis = occupational lung fibrosis due to stone dust.

Mixed/Applied

- **Q41.** Minute volume = TV × breathing rate ≈ 500 mL × 12–16 = 6–8 L/min.
- **Q44–45.** Hypoxia = oxygen deficiency at tissue level; common at **high altitude** due to low pO_2 .
- **Q47.** RV (Residual Volume) prevents lungs from collapsing even after forced expiration.
- **Q48.** High temperature, high CO_2 , high H^+ shift O_2 curve right \rightarrow more O_2 released in tissues.
- **Q49.** Surfactant reduces surface tension of alveoli, preventing collapse.